
2. Fuel Element Design
• Fuel Element: Serves as a self-regulating reactor, heat 

exchanger, and structural component with integrated flow 

channels.

• CERMET Configuration: Combines metal matrix with ceramic 

active fuel.

• Advantages: Thermal cycle durability; potential to exceeds 40-

hour operational life.

• Gyroid Design:

• Selected for space reactor fuel element.

• A type of triply periodic minimal surface (TPMS) with zero 

curvature.

• TPMS Structures: Created using surface equations; skeletal 

structures form solid volumes with interconnected pores when 

one domain is removed.

• Benefits: Maximises surface area for heat transfer and 

optimises strength-to-weight ratio

5. Microstructure Evaluation of Zr-V Alloy & TRL
• Preparation: Zr-V alloy powder placed on silica (SiO₂) sand bed, slightly 

compacted to form a green body. 

• Sintering Conditions:

• Furnace Type: Vacuum furnace, Temperature: 1500°C, Sintering 

Duration: 1 hour, Heating/Cooling Rate: 3°C per minute.

• Silica sand leads to embrittlement near crack edges due to high 

concentration of Si-precipitates and secondary oxidation, therefore 

cracking and degrading the sample.

• SPD application to NTP fuel element manufacture is estimated at the 2-

3 TRL level.

• Future work will look at replacing the support powder from silica sand to 

a non-oxidising and non-degrading material.

4. Powder Feedstock
• Iro3D Printer Specifications:

• Fine powders: 40-90 µm, coarse powders: 90-190 µm

• Zr-V Alloy Powder: Sourced from Nanochemazone (Canada); 

characterised by XRD, particle size distribution (PSD), and SEM.

• Silica Sand: >99% pure.

• XRD Composition: Zr – 70%, V – 30% atomic percent.
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3. Selective Powder Deposition (SPD)
• An additive manufacturing, layer-based sand-

casting technique.

• Uses coarse and fine silica sand as scaffolding for 

Zr-V build powder.

• Two Techniques:

• Dry Sintering: Without additional material.

• Infill: Additional metal melts and infiltrates the 

build powder.
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1. Nuclear Thermal Propulsion (NTP) 
• Utilises controlled nuclear fission to produce thrust (2-3 times that 

of chemical propulsion).

• Mechanism: Pumps liquid propellant through the reactor core, 

heating it rapidly to a gas, which expands and is forced through 

the rocket nozzle, generating high thrust.

• Notable Program: U.S. ROVER/NERVA initiative.

• Importance: Critical for reducing flight times in Mars missions.

• Operating Temperatures: Exceeding 3000K.

• Design Limitation: Efficiency depends on materials' ability to 

  withstand high temperatures.
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Overview
• Research Goal: Develop nuclear thermal propulsion fuel models with complex propellant flow channels.

• Focus: Analyse microstructural changes and assess fabrication quality.

• Material: Zirconium-Vanadium (Zr-V) alloy as fuel element matrix (no active fuel included).

• Characterisation Methods: Optical Microscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Energy-Dispersive X-ray 

Spectroscopy (EDS).
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